| = OH

~

N

AMORTISED OPTIMISATION OF NON-FUNCTIONAL
EREIREREIES INIPRODUCTHON ENVIREGINMISNEE

Shin Yoo (shin.yoo@kaist.ac.kr)
Korea Advanced Institute of Science and Technology

mailto:shin.yoo@kaist.ac.kr

EIENERCIMPROVEMEN T

EIENERCIMPROVEMEN T

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,

Optimising Existing Software with
Genetic Programming

William B. Langdon and Mark Harman

Abstract—We show genetic improvement of programs (GIP)
can scale by evolving increased performance in a widely-used
and highly complex 50000 line system. GISMOE found code
that is 70 times faster (on average) and yet is at least as good
functionally. Indeed it even gives a small semantic gain.

Index Terms—automatic software re-engineering, SBSE,
genetic programming, Bowtie2“”, multiple objective exploration

I. INTRODUCTION

ENETIC improvement [1; 2; 3; 4] is the process of
automatically improving a system’s behaviour using
genetic programming. Starting from a human written system,
genetic improvement tries to evolve it so that it is better
with respect to given criteria. The criteria for improvement
are typically non-functional properties of the system, such as
execution time and power consumption, though many others
are possible [1; 4]. The functional properties of the evolved
system are usually required to mimic as faithfully as possible
those of the original system. However we show that it may
also be possible to improve the program’s outputs,
In order to check that the original's semantics are not
disturbed, the genetic improvement process relies on a set
of test cases, obtained from running the original system.

ATt e ‘entn. somen aleosmesn e this l(] Yeomen wvesiomens . 03 .2ner s mden ow

ol Improved system
BNF
(,n&m' Grammar
- Population of modifications
.] - ‘%m
Mutation and Crossover
* Fitness
Modified Population of modifications

\ ‘/

Fig. 1. Major components of GISMOE approach. Left: system to be improved
and its test suite. Right: genetic programming optimises modifications which
originate from a grammar that describes the original system line by line.
Each generation mutation and crossover create new modifications. Each
modification’s fitness is evaluated by applying it to the grammar and then
reversing the grammar to get a new vanant of the system. Each modified
system is tested on a randomised subset of the test suite and its answers and
resource consumption compared to that of the original system. Modifications
responsible for better systems procreate into the next generation.

currently familiar (yet time-consuming, tedious and expensive)
method. Ultimately, genetic improvement looks forward to a
world in which our successors regard human programmers as

a 1avendndt anoankanmiass Al thae aand? 2 el ohee ancaa sennes blead

EIENERCIMPROVEMEN T

| Genetic Improvement 2015

A Workshop at GECCO 2015 on the Genetic Improvement of Software

HOME PHOTOS SLIDES PROGRAMME PAPERS ORGANISERS PROGRAM COMMITTEE

Vv
=
O
z
w
O
b3l
v
m
T
Vo

\ - . :

Gl 2015 Tweets ¥ Follow

v Nic McPhee 1 Aug
@NicMcPhee

. -
L 3; This was a very cool workshop; thanks to
. : ; Il involved. 4 15 #g !
}' - The First International Genetic Improvement Workshop (GI-2015) p mo {8 /e
f;, ; was held in Madrid, Spain, during the Genetic and Evolutionary Computa- 3 Retweeted by Gl 2015
U
°‘4 tion Conference (GECCO-2015), July 11-15, 2015. Expand
- £ Gl 2015 31 Ju
‘ X @Gl_2015
| Journal Special Issue Siides from half of the presenters at Gi

2015 now avallable online!

EIENERCIMPROVEMEN T

Embedding Adaptivity in Software Systems using the
ECSELR framework *

Kwaku Yeboah-Antwi
INRIA
Rennes, France = .
kwaku.yeboah-antwi@inria.fr

ABSTRACT

We present, ECSELR, an ecologically-inspired approach to
software evolution that allows for environmentally driven
evolution in extant software systems at runtime without re-
lying n any offline components or management. ECSELR
embeds adaption snd evolution inside the target software
system allowing such systems to transform themselves via
darwinian evolutionary mechanisms and adapt in a self con-
tained manner. This allows such software system to bene-
fit from the useful byproducts of evolution like adaptivity,
bio-diversity without having to worry about problems in-
volved in engineering and maintaining such properties. EC-
SELR allows the software systems to address changing en-
vironments at runtime enabling benefits like mitigation of
attacks, memory-optimization among others while avoiding
time-consuming and costly maintenance and downtime. EC-
SELR differs from existing work in that, 1) adaption is em-

Benoit Baudry
INRIA
Rennes, France
benoit.baudry@inria.fr

Keywords

Software Evolution, Diversification, Software Slimming, Search
Based Software Engineering, Genetic Improvement, Self Adap-
tive Software Engineering

1. INTRODUCTION

The field of software engineering has been straining to
deal with the exponential growth of software systems. As
computer systems get more and more complex, maintaining
them requires a huge amount of human effort. Software En-
gineering may soon hit a "complexity wall” where our efforts
will not be able to scale up to highly complex software sys-
tems (2, 6, 14]. This has led to the rise in the amount of
research being done in automating software design, main-
tenance, with software engineers increasingly seeking to de-
sign software systems that autonomously evolve and adapt.

noa;rrn;nn‘ ﬁlIl'h L‘Dlr_l\“' ;"I;IL‘;'I‘T ﬂl'ﬂ“’ ;‘ID CrrOt v ‘\;:u l\m“

EIENERCIMPROVEMEN T

locoGP: Improving Performance by
Genetic Programming Java Source Code

Brendan Cody-Kenny, Edgar Galvan-Lépez, Stephen Barrett
School of Computer Science & Statistics, Trinity College Dublin

{codykenb, edgar.galvan, stephen.barrett}@scss.tcd.ie

ABSTRACT

We present locoGP, a Genetic Programming (GP) system
written in Java for evolving Java source code. locoGP was
designed to improve the performance of programs as mea-
sured in the number of operations executed. Variable test
cases are used to maintain functional correctness during evo-
lution. The operation of locoGP is demonstrated on a num-
ber of typically constructed “off-the-shelf” hand-written im-
plementations of sort and prefix-code programs. locoGP was
able to find improvement opportunities in all test problems.

Categories and Subject Descriptors

[.2 [ARTIFICIAL INTELLIGENCE|: Automatic Pro-
gramming; D.2.8 [Software Engineering|: Metrics—com-
plexity measures, performance measures

own language (as defined by the primitives chosen), parser
and interpreter. Interpretation and evaluation of programs
can be achieved in a small amount of code by choosing a
set. of primitive functions specifically for a problem. Fortu-
nately, there exist comprehensive libraries for parsing, com-
piling and interpreting more general Java programs upon
which locoGP relies heavily.

In locoGP, the primitive set is defined by Java language
elements which exist in the program to be improved and
may include statements, expressions, variable names or op-
erators. Source code is modified in an Abstract Syntax Tree
(AST) representation which specifies the typing of nodes and
structure of a program in the Java language.

Performance is measured by counting the number of in-
structions taken to execute a program. Program results are
measured for correctness with a problem-specific function by

EIENERCIMPROVEMEN T

Genetic Programming and Evolvable
Machines

ISSN: 1389-2576 (Print) 1573-7632 (Online)

Description

Methods for artificial evolution of active components are rapidly developing branches of adaptive
computation and adaptive engineering. They entail the development, evaluation and application of
methods that mirror the process of neo-Darwinian evolution. Genetic Programming and Evolvable
Machines reports innovative and significant progress in automatic evolution of software and

16 61 397 10 2000-2015

Find your Volume or Issue Browse all Content

n Browse Volumes & Issues

J View Open Access Articles

GENETIC
PROGRAMMING
AND EVOLVABLE
MACHINES

Other actions

» Register for Journal Updat:

» About This Journal =

Share

RV Rin

OFFLINE IMPROVEMEN T

BNF

Grammar

g [miproved system

Select

Modified
code

Population 6f modifications

———

\v

Mutation and Crossover

Population of modifications

Fig. 1. GP improvement of MiniSAT.

OFFLINE IMPROVEMEN T

g [IprOvVed system

Population of modifications

—_

Mutation and Crossover

Modified

Population of modifications
code |

e

OFFLINE IMPROVEMEN T

g [IprOvVed system

Population of modifications

—_

\v

Mutation and Crossover

/

Population of modifications

Fitness

Modified

code

ENVIRONMENTAL FACTORS

—

- - 1;§: - o

T S SR

1275 E

EN\/\RONMENTAL FACTORS

VWe cannot anticipate the environment
that the software will be executed:
hence 1t Is hard to optimise for It.

OFFLINE OPTIMISATION

selection

crossover
mutation

-

fitness evaluation

One Generation

AMORTISED OPTIMISATION

selection
crossover

mutation

AMORTISED OPTIMISATION

selection
crossover

. . mutation

AMORTISED OPTIMISATION

AMORTISED OPTIMISATION

AMORTISED OPTIMISATION

Persistence Layer

AMORTISED OPTIMISATION

Persistence Layer

Optimisation executed in micro-steps,
each In-situ execution as a single fitness evaluation

AMORTISED OPTIMISATION

AMORTISED OPTIMISATION

AMORTISED OPTIMISATION

AMORTISED OPTIMISATION

@

Budget Controlled
(will stop when run out)

[cAuTiON]

LOW
OVERHEAD
_ CLEARANCE

Low Overhead
(only microscopes)

STATE-BASED RECONSTRUCTION
OF OPTIMISATION

—/RETURN(Best) Best Solution =2 RETURN(Best)

eval > 0 A HASNEXT(NV)/
x <— NEXT(N); RETURN(z)

Evaluate
Neighbours

eval == 0/

RETURN(Best
B eval > 0 A “HASNEXT(N) /-

—ISLOCALOPTIMA()/
x < BEST(N); RETURN(z)

eval >0/
x < RANDOM(); RETURN(z);

Random
Solution

Execute transitions until you return a candidate solution to the SUMO

ISLOCALOPTIMA() /-

STATE-BASED RECONSTRUCTION
OF OPTIMISATION

—/RETURN(Best) C@

eval == 0/
RETURN(Best)

== O/RETURN(Best
) eval > 0 A HASNEXT(NV)/
x <— NEXT(N); RETURN(z)

Evaluate
Neighbours

eval > 0 A “HASNEXT(N) /-
—ISLOCALOPTIMA()/

x < BEST(N); RETURN(z)

x < RANDOM(); RETURN(z);

Random
; Generate
Solution

Execute transitions until you return a candidate solution to the SUMO

start —

ISLOCALOPTIMA() /-

STATE-BASED RECONSTRUCTION
OF OPTIMISATION

RN

== O/RETURN(Best>

—/RETURN(Best) Best Solution

eval > 0 A HASNEXT(NV)/
x <— NEXT(N); RETURN(z)

Evaluate
Neighbours

eval == 0/

RETURN(Best
B eval > 0 A “HASNEXT(N) /-

—ISLOCALOPTIMA()/
x < BEST(N); RETURN(z)

eval >0/
x < RANDOM(); RETURN(z);

Random
Solution

Execute transitions until you return a candidate solution to the SUMO

Generate

ISLOCALOPTIMA() /-

STATE-BASED RECONSTRUCTION
OF OPTIMISATION

—/RETURN(Best) Best Solution

== O/RETURN(Best
) eval > 0 A HASNEXT(NV)/
x <— NEXT(N); RETURN(z)

Evaluate
Neighbours

eval == 0/

RETURN(Best
B eval > 0 A “HASNEXT(N) /-

—ISLOCALOPTIMA()/
x < BEST(N); RETURN(z)

ISLOCALOPTIMA() /-

Execute transitions until you return a candidate solution to the SUMO

DOES [T WORKY?

How has PyPy performance evolved over time?

6.91x 6.99% 6.97x

6.40 6.12x06.21x 833 6.31 6,22

5.52x 5.71x
5.29x

512 4. 78x

3.6%x

LATx

0.00
"l\'." \.s \? \?) _.b \:‘ \;b \9 - S r}.\ rL'} '.3'0 1\)\ ,\"Q ")'Q, 19>\ \(0(’
L - T o T -2 RO - o R 2 B - I, L o B o VUK, Tt Tl A 7,
Q#"DQ CRRE S A L HT?*Q‘ LAK P QS LR LSS LN RS o
S
Plot 2: Speedup compared to CPython, using the inverse of the geometric average of normalized times, out of 20 benchmarks (see paper on why the
geometric mean is better for normalized results).

We applied amortised optimisation to pypy,
a tracing-JI I based python implementation.

TRACING |IT

» Repeatedly executed loops and functions are marked

e

* [races of hot code Is transla:

with guards that guarantee the c

* When guards fall (meaning inter

Sl toc) revert

‘ed Into the native code,

orrectness

bretation and |IT code

DeESICHRERp E;

ration and recomplle

bridge (a sub-path that corrects the divergence)

TRACING JIT PARAMETERS

TRACING JIT PARAMETERS

VWhen to begin

tracing!

TRACING JIT PARAMETERS

When to begin When to mark as
tracing? hot!

TRACING JIT PARAMETERS

When to begin When to mark as
tracing? hot!

When to complle
the bridge!

PIACIN

PIACIN

| .Install the package.

PIACIN

Install the package.

Import the package

PIACIN

|.Install the package.

2.Import the package
S AEE B Ao Siety o

make_me_faster.py

AN piacin.hc
r)

3

EVALUATION

Benchmark user scripts from http://speed.pypy.org

Control group: 20 executions of the user script, repeated
20 times

Treatment group: 100 executions of the user script (about

80 for optimisation, 20 for post-hoc evaluation), repeated
20 times

Fitness: execution time measured with system clock

http://speed.pypy.org

Table 1. Benchmark user scripts used for the JIT optimisation case study

Script Description

bm_call method.py Repeated method calls in Python

bm_django.py Use django to generate 100 by 100 tables

bm_nbody . py Predict n-body planetary movements®

bm_nqueens.py Solve the 8 queens problem

bm_regex compile.py Forced recompliations of regular expressions
bm_regex_v8.py Regular expression matching benchmark adopted from vV8°
bm_spambayes.py Apply a Bayesian spam filter® to a stored mailbox
bm_spitfire.py Generate HTML tables using spitfire? library

“ Adopted from http://shootout.alioth.debian.org/u64q/benchmark.php?test=
nbody&lang=python&id=4.

® Google’s Javascript Runtime: https://code.google.com/p/v8/.

“ http://spambayes.sourceforge.net

“ A template compiler library: https://code.google.com/p/spitfire/

bm_regex_compile.py

bm_spambayes.py

bm_regex_v8.py

14

10

10 15

5

7.5

6.5

Default

0O 5 10 15 20

—{ QoelEa090: 0800200
I I I I I

RN RR0 S116720

ot e

E5- T MR R
RS T eliOs 64520

14

10

10 15

5

7.5

6.5

Amortised Optimisation

T
| R T A I TeT TT T 17T TT,T 17,7717 [T O
:II:'I"TIITI:T”I'TIITI ITI:IITITIIITTTTTTTTTTTTT:II:TTII:IIIIIIT |T
— ' (R | |I III [} N 1 IIII III |II|I 1T
e Y Lt i oL R
]
— T
]
L
@-GD- - oSt vtk and i st At iy S E iy R R ' ' m
— Lyadfla, by, it g, bpadygadag, g taay g otV e Ty i
L i o T Ly P R O S T U U RO U TR T
I I I I I I I I I I I I I I I I I I I I
0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
(@)

10

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

717 1T T
ey
D

111111111161

T

T

;)IIIII|IIIIII1111©

L

0

5

10

I I I I
15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Py

bm_call_method

bm_spitfire.py

bm_django.py

0.64 0.70 0.76

21.0

20.0

2.9

2.6

2.3

Default
: OO P o0
o OQ)O

= m TTTQ)
g (A BEE @

_@** it LJ‘OLJ'L
| | | | |
0O 5 10 15 20

@)

@)
@ o
g e

AR s Ee R
RN RR0 S116720

_@QQC@D%O

i %gﬁg%%

=58 =51i0

15 20

0.64 0.70 0.76

21.0

20.0

26 29

2.3

Amortised Optimisation

@) O O @)
O
(@) ') T . |O

@5%@) 280 :rono,:, i .Tof, I:IT:T,@”TI '*QT.T'T'TT!T 0
E TOTTTT Lriig! 'T III UL ﬂM' TOTTTT o
T 1* SRR i Hi“é;?ﬁ m e
| | | | | | | | | | | | | | | | | | | |
O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

O
@ 5 E
Q@ 00 O =6
© 00 g @ Oo 59 G She e o 2
$8 o &53 QS %5 g D 3 dbc%oo
Tt %&)%ﬁ%ﬁ%@%m@%ﬂﬂ% A
E*;“* (“)111 3 Lll il LTTLont il LI IIETILTT iti, l@“‘élll
| | | | | | | | | | | | | | | | | | |
O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

O ®)
o ® ©
Io,. i S G ey O
O P N TR S S R e
T TTT I II|I [I T I | I | Y) IITOTCTII%TWIO
m' TV ITY TQTTT T
E 11;*11 1* 1y tauas *1;1 141 l*x 1, 1*Ll;'“l'* 1"1 l"ll'x*“ :lu %
11 1 llo OJ- 11, 1 ().L J‘Llllllllo LLLLJ.
| | | | | | | | | | | | | | | | | | | |
O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Table 2. Descriptive statistics and the p-values of the hypothesis testing from the pypy
case study. The user script bm_regex_v8.py becomes 8.6% faster after the amortised

optimisation.

Sl Default Optimised pale
Mean Std. Dev. Mean Std. Dev.
bm_call method.py 0.6631 0.0150 0.6630 0.0130 0.4478
bm_django.py 2.4018 0.0397 2.4161 0.0753 0.9996
bm_nbody . py 1.1948 0.0071 1.1871 0.0136 <le-4
bm_nqueens.py 2.7367 0.0237 2.5595 0.0743 <1le-4
bm_regex v8.py 7.0045 0.0347 6.8580 0.1583 <le-4
bm regex compile.py 7.4155 0.0471 6.8786 1.5073 <le-4
bm_spambayes.py 5.0604 0.16564 4.9346 0.3851 <le-4
bm_spitfire.py 19.9485 0.0861 20.1045 0.1228 1.0000

HOW ABOU T HARDWARE!

et us consider matrix multiplication.

() (I} (I}

HOW ABOU T HARDWARE!

et us consider matrix multiplication.

(I} (I} {0}

HOW ABOU T HARDWARE!

et us consider matrix multiplication.

(I} (I} (I}

Blocked Matrix Multiplication: smaller inner loop
to fit everything into LI cache.

HOW ABOU T HARDWARE!

et us consider matrix multiplication.

Optimal block size depends on LI size.

{1)

Blocked Matrix Multiplication: smaller inner loop
to fit everything into LI cache.

NIA>CIN

Non-Invasive, Amortised and Autonomous Code Injection

J| BlockedMatrixMultiplication.java £2
O
12¢ @Input(name = "block_size", initvalue = "2", bound = "1, 512")

] public void setBlockSize(int size)

14 {
SN OH 1t this.BLOCK_SIZE = size;

}

@0ptimize(name = "rate", type = Double.class, direction = Optimi
public Double getRate()

\

{
r\J 21 return new Double(rate);
}

Annotation-based

24 public BlockedMatrixMultiplication()
25 {
26 Niacin.initialise(BlockedMatrixMultiplication.class);

27 }

Fvent-driven dependency injection

EVALUATION

Table 3. Information about CPUs for which BMM was optimised

CPU Clock Frequency L1 Instruction Cache L1 Data Cache
Intel Xeon W3680 3.33GHz 32KB 32KB
Intel Core-i7 3820QM* 2.7GHz 32KB 32KB
ARM1176 (BCM2835 SoC)? 250MHz 16KB 16KB

“ These Intel CPUs share data and instruction caches between two processor threads.
® Raspberry Pi Model B, first edition.

Intel Xeon

Core-i7

ARM1176

1e+05 3e+05 5e+05

6e+05

2e+05

6000 10000

2000

Fithess

TTTeTer
1Ty LT)

'O

o7 . j
1y u -
L i LT
Dg ¥ E IEIII:::: “oLgH :
] @ it

®)

T 1114,,04)00 1111710

0

10 20 30

40 50 60 70

T 1T 71
80 90

rﬁ“&g @m

T
1 (L} 1
TR LA

T
T

i
¢
§
%

pTIITITE e Ty Ty Ty

A0 [|
- 1‘111‘1111111111111

a
"=

0

10 20 30

40

50 60

70

80 90

TTT|

193

1

g gnl

JITTTTITITITITITIITT

11y 11
L
1

nal
Q) 1l
1

T

0

10 20 30

40

1T 11
50 60

1
1
1
1
1
1
I

I
70

300 500

100

300 500

100

300 500

100

Block Size

- =
-3
==

FTTTITIT I T reeeT
|||||||||||||||||||nr":T

(R
(TR
(R

T

[
1
1111

U

TTINEC

b

1111111111

Ny
11101TIILLL

I
0

I
10

20 30

40 50 60

[T 1
70

T 11
80 90

TITTI T Tpqyyf

RIS N

TTITITT

Ll
&Tnmlm,‘, i nn I T
441 |||“|””,Innnl””“nrm.””nn i
" '””'"""l.|||”||I'|"'”I|II“l””'r it
d:', GnDI“n|I|||||,””"|||||||"" ATTLL T
|I© I"|||I|||||,””" ||||||':' |||||:'::, ||“j::
iy 'II”II”I“' 'II . llII -|lr“|I|IIII” I
it | N0 NI
I::@D:u”“”” Il i] (AELNT |
o TR I | LTI
lirllll U ' 1y
Wfrr? m
Ml I
[(I | 1
1 ih
!
(LIS SO T T e
haeatoonnao ml kT
|
REREERERLL ! R
ulIU I " v
o
H Py PP kG ol
1“““““‘“11111”'”””"""""'
LLLLLLALL gy L

I
0

I
10

20 30

I
40

50 60

70

80 90

T
LAALALALINNS] pryfTITITITITIT T Ty
LTI LpL T 1 T
i gl LI T It
ittt INEETPETen | | 1§ W T i "
vt T, 1 T Ay
i Vi T
Ll ALK T L !
1N ||I||||| 1 ! |'I|||' iy
”'” 1 T |'I|||' g
! T Joc M
n 1 RTL
HlIU d iy i N
1] IO !
1 |
1 ! | N LU
! I
| !
T 1T] 1
1
ull | !
T
000k 07 I |
mith i ..
i T A
nith y e mh UL
T " " Wy
L o Bon000000C
ittt Ve n |||||||||||”
Ly e)| ““““““H
Leriing L gl
e AN | R

0

10

20 30

40

50 60

70

80 90

ReoULAD

Table 4. Descriptive statistics of the BMM algorithm

CPU Block Size = 2 Optimised

Mean Fitness Std. Dev.|Mean Fitness Std. Dev. Mean Block Size Std. Dev.
Xeon 305189.00 1118.35 634510.13 17254.99 32.25 10.52
Core-i7 377196.74 6360.66 863878.91 34566.63 44.05 26.85
ARM1176 6531.64 124.07 10486.23 574.29 12.90 8.97

» Core-1/ can use the largest block size. Its single core performance Is
actually higher than Xeon (confirmed by a 3rd party benchmark).

» ARM can only use the mean block size of roughly | 3.

U REPS

U REPS

Restricted to
behaviour-
preserving

optimisations only

U REPS

Restricted to Getting precise
behaviour- measurements
preserving

optimisations only

U REPS

/_/_

User may experience
performance fluctuation

4

Ll

Restricted to Getting precise
behaviour- measurements
preserving

optimisations only

U REPS

User may experience
performance fluctuation

30 40 s0 60 7o
teslantoedhiabisddnahin

RR T

Restricted to Getting precise
behaviour- measurements
preserving

optimisations only

-

We want you!

EHORTISED OPTIMISATRICIS

Persistence Layer

Optimisation executed in micro-steps,
each in-situ execution as a single fitness evaluation

EHORTISED OPTIMISATRICIS

Persistence Layer

Optimisation executed in micro-steps,
each in-situ execution as a single fitness evaluation

EHORTISED OPTIMISATRICIS

@

N —

Budget Controlled
(will stop when run out)

LOW
OVERHEAD
CLEARANCE

(((((o

Low Overhead
(only microscopes)

EHORTISED OPTIMISATRICIS

Persistence Layer

Optimisation executed in micro-steps,
each in-situ execution as a single fitness evaluation

Default

pile.py
14

ex_com

9

10
T O W

bm_re:

0 5 10 15 20

5 10 15

bm_spambayes.py

T s D, T
0 5 10 15 20

7.5

bm_regex_v8.py

6.5

B 5 0 i3 &)

14

10

10 15

5

6.5

EHORTISED OPTIMISATRICIS

(((((o

N —

Budget Controlled
(will stop when run out)

LOW
OVERHEAD
CLEARANCE

Low Overhead
(only microscopes)

Amortised Optimisation

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

EHORTISED OPTIMISATRICIS

Persistence Layer

Optimisation executed in micro-steps,
each in-situ execution as a single fitness evaluation

Default
a
&8 d
o2 8
£ =
8‘0_
3 g [CIE= = SO R e
o
€ o
|
£ U
o
0 5 10 15 20
)
3
R
£
=
g <
2}
E"’n
] U
0 5 10 15 20
)
20 peebta
2N
[
o —
g
= D9
T T T

B 5 0 i3 &)

10 14

6

Amortised Optimisation

i pdigadaaa Tyt e i
i 4 R Tyt L T Vot EPV R SN
T T T T T T T T T T T T T T T T

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

EHORTISED OPTIMISATRICIS

(((((o

N —

Budget Controlled
(will stop when run out)

LOW
OVERHEAD
CLEARANCE

Low Overhead
(only microscopes)

Code Avallable

https://bitbucket.org/ntrolls/piacin

https://bitbucket.org/ntrolls/niacin

