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OFFLINE IMPROVEMENT

We modified two C++ files: Solver.cc, containing the core solving algorithm (321
out of 582 lines of code), and SimpSolver.cc, which simplifies the input instance (327
out of 480 lines of code).

Furthermore, we were evolving a list of changes, that is, a list of copy, replace and
delete instructions. We only kept such lists in memory, instead of multiple copies of an
evolved source code.

For each generation the top half of the population was selected. These were either
mutated, by adding some of the three operations mentioned above, or crossover was
applied, which simply merged two lists of changes together. Mutation and crossover
took place with 50% probability each. New individuals were created by selecting one
of the three mutation operations.

For each generation five problems were randomly chosen from the five groups of test
cases. Fitness was evaluated as follows: if correct answer was returned by an individual,
2 points were added; if, additionally, the modified program was faster, 1 more point
was added. Only individuals with 10 or more points were considered for selection. In
order to avoid environmental factors, we counted the number of lines used to establish
whether a mutated program was more efficient than the original one. The whole process
is presented in Figure 1.

Fig. 1. GP improvement of MiniSAT.

4 Initial Results

A summary of our results is shown in Table 1. We refer to versions of MiniSAT that run
faster than the unmodified solver on the maximum set of instances as ‘best individuals’.

We ran our experiments on a test suite with 71 test cases taken from the 2011 SAT
competition. Each generation contained 20 individuals. Time limit was set to 25 seconds
and it took 14 hours to produce 100 generations. We only modified the Solver.cc file,
containing the core solving algorithm. Of all programs generated 73% of them com-
piled. The best one was more efficient than the unmodified solver on 70 SAT instances,
in terms of lines of code used. However, the modified versions mostly just removed
assertions as well as some statistical data. Some optimisations have also been deleted,
but these in turn led to longer runtimes on certain instances.

Next, we selected the test cases from only the application tracks of SAT competi-
tions. MiniSAT was able to find an answer for 107 problems out of 500 instances tested
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We cannot anticipate the environment 
that the software will be executed; 
hence it is hard to optimise for it.
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each in-situ execution as a single fitness evaluation 
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STATE-BASED RECONSTRUCTION 
OF OPTIMISATION
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Fig. 2. State-based model of amortised hill climbing algorithm: return(x) decreases
the remaining number of fitness evaluations, eval, by 1.

pauses when the second transition is triggered and the call return(x) is made
(which returns the first solution in N).

3 Case Study: Optimising the JIT parameters for Pypy

3.1 JIT Parameter Optimisation

Pypy is an alternative Python runtime implementation with a strong focus on
Just In Time (JIT) compilation [11]. The JIT compilation mechanism used by
pypy is the tracing JIT. Tracing JIT starts by profiling the code to identify
frequently executed, or hot, loops. In the next stage, the runtime records the
history of all operations executed during a single iteration of a hot loop. These
are then translated into the native machine code. What is unique with pypy is
that the tracing JIT is not applied to the user script, but rather to the interpreter
that runs the user script.

How aggressively pypy tries to JIT compile the user script depends on a set of
parameters that control the behaviour of the tracing JIT. While JIT compilation
in general can make Python, which is interpreted, significantly faster with pypy,
it is not always the case that JIT compiling more of the user script results in
shorter execution time. The more aggressive pypy tries to JIT compile, the higher
the cost of tracing becomes. If the gain in JIT compilation does not exceed the
cost, compiling more of the user script can actually slow pypy down. This trade
o↵ is unique to each user script and the environment pypy runs in. Therefore,
finding the desirable set of JIT parameters for pypy can be an ideal application
for the in situ, amortised optimisation.

Execute transitions until you return a candidate solution to the SUMO
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DOES IT WORK?

We applied amortised optimisation to pypy,
a tracing-JIT based python implementation.



TRACING JIT
• Repeatedly executed loops and functions are marked 

“hot”

• Traces of hot code is translated into the native code, 
with guards that guarantee the correctness

• When guards fail (meaning interpretation and JIT code 
diverge), revert back to interpretation and recompile 
bridge (a sub-path that corrects the divergence)



TRACING JIT PARAMETERS



TRACING JIT PARAMETERS

When to begin 
tracing?



TRACING JIT PARAMETERS

When to begin 
tracing?

When to mark as 
hot?



TRACING JIT PARAMETERS

When to begin 
tracing?

When to mark as 
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PIACIN
1.Install the package.
2.Import the package
3. There is no step 3.



EVALUATION
• Benchmark user scripts from http://speed.pypy.org

• Control group: 20 executions of the user script, repeated 
20 times

• Treatment group: 100 executions of the user script (about 
80 for optimisation, 20 for post-hoc evaluation), repeated 
20 times

• Fitness: execution time measured with system clock

http://speed.pypy.org


Table 1. Benchmark user scripts used for the JIT optimisation case study

Script Description

bm call method.py Repeated method calls in Python
bm django.py Use django to generate 100 by 100 tables
bm nbody.py Predict n-body planetary movementsa

bm nqueens.py Solve the 8 queens problem
bm regex compile.py Forced recompliations of regular expressions
bm regex v8.py Regular expression matching benchmark adopted from V8

b

bm spambayes.py Apply a Bayesian spam filterc to a stored mailbox
bm spitfire.py Generate HTML tables using spitfire

d library

a Adopted from http://shootout.alioth.debian.org/u64q/benchmark.php?test=

nbody&lang=python&id=4.
b Google’s Javascript Runtime: https://code.google.com/p/v8/.
c
http://spambayes.sourceforge.net

d A template compiler library: https://code.google.com/p/spitfire/

need to be set once during the execution of a single user script, name Y simi-
larly only need to be called twice: when the user script starts (to configure pypy
with the current parameters), and when it finishes (to record the fitness value
associate with the current parameters). The first hook is implemented by imple-
menting name Y as a Python package, and placing the JIT configuration code
as part of the package initialisation. The second hook is implemented by using
the atexit hook that is provided by Python by default. The benefits of this
package-based design is that the user only need to include name Y package (i.e.
to have import piacin at the beginning of the user script) to benefit from it.

The amortised optimisation algorithm in name Y is the steepest ascent hill
climbing. Neighbourhood solutions are generated by adding and subtracting pre-
defined step values to each of the parameters: 20 for function threshold, 10 for
trace eagerness, and 0.05 for threshold ratio. When the newly generated can-
didate solution has any parameter outside the predefined range, the parameter
value is wrapped around the range.

We use the default parameters of pypy as the starting point of the hill climb-
ing. Since these parameters are the result of careful benchmarking, it would be
wasteful to discard them without consideration. However, when the hill climbing
reaches local optima, we fall back to the random restart mechanism.

Control vs. Treatment Group The control group consists of 20 un-optimised
runs of user benchmark scripts. Each control group run contains 20 un-optimised
pypy executions of the corresponding scripts. The treatment group consists of 20
optimised runs of user benchmark scripts. Each treatment group run contains
100 optimised pypy executions of the corresponding scripts: 80 executions at
the beginning is used for optimisation, the best solution from which is used by
the remaining 20 executions. Both groups have been executed with pypy version
2.4.0 on Mac OS X 10.10.2, using Intel Xeon 3.3Hz CPU with 6 cores and 16GB
of RAM. All the user scripts are single threaded and were executed one by one.
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Table 2. Descriptive statistics and the p-values of the hypothesis testing from the pypy
case study. The user script bm regex v8.py becomes 8.6% faster after the amortised
optimisation.

Subject
Default Optimised

p-value
Mean Std. Dev. Mean Std. Dev.

bm call method.py 0.6631 0.0150 0.6630 0.0130 0.4478
bm django.py 2.4018 0.0397 2.4161 0.0753 0.9996
bm nbody.py 1.1948 0.0071 1.1871 0.0136 <1e-4
bm nqueens.py 2.7367 0.0237 2.5595 0.0743 <1e-4
bm regex v8.py 7.5045 0.0347 6.8580 0.1583 <1e-4
bm regex compile.py 7.4155 0.0471 6.8786 1.5073 <1e-4
bm spambayes.py 5.0654 0.1654 4.9346 0.3851 <1e-4
bm spitfire.py 19.9485 0.0861 20.1045 0.1228 1.0000

Algorithm 1: BMM
Input: Size of matrices, n, n-by-n matrices
A and B

Output: matrix C, which equals to A ·B
(1) n blocks d n

BS e
(2) for bi = 0 to bi < n blocks

(3) i bi ⇤BS

(4) for bj = 0 to bj < n blocks

(5) j  bj ⇤BS

(6) for bk = 0 to bk < n blocks

(7) k  bk ⇤BS

(8) block(n, A, B, C, i, j, k)

Algorithm 2: BLOCK
Input: Matrix size, n, matrices A, B, and C, indices i, j,
and k

Output: Updates matrix C

(1) M  (i+BS > n?n� i : BS)
(2) N  (j +BS > n?n� j : BS)
(3) K  (k +BS > n?n� k : BS)
(4) for i = 0 to i < M

(5) for j = 0 to j < N

(6) cij  C[j + i ⇤ n+j +i ⇤ n]
(7) for k = 0 to k < K

(8) cij+ = A[i · n+ k + i · n+ k]·
(9) B[j + k · n+ j + k · n]
(10) C[j + i · n+ j + i · n] = cij

4.1 Blocked Matrix Multiplication (BMM)

Algorithm 1 and 2 collectively present the Blocked Matrix Multiplication for
square matrices. Algorithm 1 breaks down the matrices into smaller blocks of
size BS (Block Size), and invokes Algorithm 2 for each of them. The introduction
of additional loops may appear harmful for performance. However, having nested
loops around a smaller region of memory allows BMM to exploit better CPU
pipelining and higher cache hit rate, resulting in faster overall computation.

The key to the increased performance is the size of the block. However,
choosing the ideal size depends on details of the hardware environment, such as
the cache size of the L1 cache. Hard-coding a fixed block size into BMM may
produce desirable performance on one machine, but if the code is deployed to
and executed on another machine with a di↵erent CPU, there is no guarantee
that the same performance will be retained. This provides a compelling use case
for the amortised optimisation.
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HOW ABOUT HARDWARE?
Let us consider matrix multiplication.

x =

Blocked Matrix Multiplication: smaller inner loop
to fit everything into L1 cache.

Optimal block size depends on L1 size.
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EVALUATION

4.2 Experimental Setup

Implementation We use a Java implementation of the BMM algorithm for
matrices of double type. The amortised optimisation framework, called Name X
(Non-Invasive Amortised & Automated Adaptivity Code Injection), uses the hill
climbing algorithm and is also implemented in Java2. To be as little intrusive as
possible, Name X a publish-subscribe style event bus to establish communication
between the SUMO and the optimisation. Parameters to be optimised (in the
case study, the block size), as well as the measure of the fitness (in the case
study, the number of floating point multiplications performed in second), need
to be marked with annotation. Before the parameter is to be used, the SUMO
needs to call Name X so that the parameter variable is updated with the current
solution; after the parameter has been used, the SUMO needs to call Name X
so that the fitness is fed back to the optimisation.

The range of block size was set to [1, 512]. Name X generates neighbouring
solutions by adding and subtracting 1 to the current block size. When moving
through consecutive block sizes, certain sizes will be evaluated twice: first as
the current solution, and second as a neighbour. Since the non-functional fitness
measure is expected to be noisy, the redundant behaviour was left in Name X
deliberately, providing opportunities to evaluate the same solution more than
once (and, therefore, getting clearer measures of the fitness).

Table 3. Information about CPUs for which BMM was optimised

CPU Clock Frequency L1 Instruction Cache L1 Data Cache

Intel Xeon W3680a 3.33GHz 32KB 32KB
Intel Core-i7 3820QMa 2.7GHz 32KB 32KB
ARM1176 (BCM2835 SoC)b 250MHz 16KB 16KB

a These Intel CPUs share data and instruction caches between two processor threads.
b Raspberry Pi Model B, first edition.

Environment Table 3 shows three di↵erent CPUs for which the BMM algo-
rithm was optimised in this study. Intel Xeon is a 6 code desktop CPU with
32KB instruction and data cache; Core-i7 used for this study is a mobile (lap-
top) version, which has the same cache provision as the Xeon CPU. Finally, to
investigate how well the amortised optimisation can adapt to an environment
with very limited resources, we use ARM1176 core on a Broadcom BCM2835
System-on-Chip, which is found in Raspberry Pi version 1 model B. Both Intel
CPUs ran OS X 10.10.2 and Java SE Runtime (build 1.8.0 25-b17) with the
HopSpot 64-Bit Server VM (build 25.25-b02); Raspberry Pi ran Linux 3.18.8
and Java SE Runtime (build 1.8.0-b132, mixed mode) with the HotSpot Client
VM (build 25.0-b70, mixed mode).

2 Name X is made available as open source software at [redacted for blind

review].
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RESULTS

• Core-i7 can use the largest block size. Its single core performance is 
actually higher than Xeon (confirmed by a 3rd party benchmark).

• ARM can only use the mean block size of roughly 13.

Data Collection For this study, to have a control group without the amortised
optimisation would mean to execute the BMM algorithm with a fixed arbitrary
block size, which would contribute little to investigating how the optimisation
can help. Instead, we fixed the starting block size to 2 and repeated matrix multi-
plications for 100 times on di↵erent CPUs: 80 multiplications have been used by
the amortised optimisation to search for the best block size, while the remaining
20 multiplications used the known best block size. This process was repeated for
20 times per CPU to cater for the inherent randomness in the algorithm. On
Intel CPUs, we used matrices of size 1,000 by 1,000; on the Raspberry Pi, we
used matrices of size 500 by 500. The fitness value is measured by the number
of floating point operations per millisecond, using the system clock.

4.3 Results

Figure 5 shows the results of the amortised optimisation of the BMM algorithm
for di↵erent CPUs. The boxplots on the left show how the fitness value (the
number of floating point operations per millisecond) across the 20 di↵erent runs
(x-axis represents the number of times the BMM is executed). The boxplots on
the right shows which block size was tried: although the hill climbing algorithm
relies on the random restart at di↵erent points in di↵erent runs, these boxplots
still reveal interesting trends in the optimisation of the block size. The vertical
lines depict the point at which the optimisation stops and the BMM starts using
the best known solution.

Both Xeon and Core-i7 benefits from larger block size, up to around 30, which
can be observed from the relatively smooth shapes formed of individual boxplots
and the straight, consistent increase in the block size in executions 1 to 30. Block
sizes from ARM1176 shows a much wider exploration of the search space, which
did not necessarily result in increased fitness value. For all three CPUs, both
the fitness values and the block sizes show relatively small dispersion, suggesting
that the optimisations did converge.

Table 4. Descriptive statistics of the BMM algorithm

CPU
Block Size = 2 Optimised

Mean Fitness Std. Dev. Mean Fitness Std. Dev. Mean Block Size Std. Dev.

Xeon 305189.00 1118.35 634510.13 17254.99 32.25 10.52
Core-i7 377196.74 6360.66 863878.91 34566.63 44.05 26.85
ARM1176 6531.64 124.07 10486.23 574.29 12.90 8.97

Table 4 shows the descriptive statistics of the BMM algorithm, before (i.e.
of the first executions of each of the 20 runs) and after the amortised optimi-
sation (i.e. of the last 20 executions of each of the 20 runs). Both the fitness
values and the block sizes passed Shapiro-Wilk normality test. On average, the
amortised optimisation increased the performance of the BMM by about two
times for Xeon and Core-i7 CPUS, and by an order of magnitude for ARM1176.
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https://bitbucket.org/ntrolls/piacin

Code Available
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